

Single-Mode Fiber

TeraLight[™] Optical Fiber

To minimize your chromatic dispersion compensation CAPEX

Draka's TeraLight[™] Non-Zero Dispersion Shifted Fiber (NZDSF) has set the standard for high bit-rate, multi-wavelength transmission. Its unique optimization of effective area, chromatic dispersion and dispersion slope enables excellent distorsion management cost effective operation at 10 and 40 Gbps, tight channel spacing in C- and L-bands, compatibility with the future S-band.

TeraLight[™] is optimized for metropolitan backbone and long-haul applications. Its typical chromatic dispersion of 8 ps/nm.km at 1550 nm is optimized to be half that of standard single-mode fiber. It supports 10 Gbps transmission without dispersion compensation for distances of about 200 km, resulting in cost savings compared to standard single-mode fiber. For long-haul applications it results in lower costs for dispersion compensation, while still minimizing cross-channel non-linearities. For 40 Gbps operation, commercially available devices can be used.

The fiber complies with or exceeds the ITU-T Recommendations G.655.E/G.656, the IEC International Standard 60793-2-50 type B4/B5 and can be used in all cable constructions, including loose tube, tight buffered, ribbon and central tube designs. Draka's Advanced Plasma and Vapor Deposition (APVDTM) manufacturing process and proprietary ColorLock-XS coating process further enhance fiber purity, reliability, and durability.

Features	Advantages
Optimized for 2.5 and 10 Gbps operation without dispersion compensation in Metropolitan area networks	 Cost savings compared to standard single-mode fiber (DCU + potentially EDFA) Simplifies network design and management Increase network flexibility Allows use of cheap transmitter
40 Gbps operation with commercially available dispersion compensation devices	 Future safe investment Close to 100% dispersion slope compensation Contact Draka for availability
Compatibility with long haul NZDSF	Easy extension of route distancesConsistent fiber type minimizes network complexity
More than 160 channels in C-band alone at 10 Gbps	Maximizing C-band utilization defers costly L-band deployment, providing significant cost savings
320 channels in C-, L- and S-bands at 10 Gbps	Higher capacity and more efficient bandwidth use
S-band compatibility	 Future capacity increase Efficiently supports 1460 – 1625 nm 8 channels CWDM cheap transmission systems

Key Industry Leading Milestones

VALWE

1999	2002	2	003		2005
Introduced TeraLight [™]	World record: 6.4 Tbps over 2100 km	World reco 80 channe	ord: 6000 km Is at 10 Gbps	World r 40 channels a	record: 4000 km t 40 Gbps (EDFA only)
Draka Communications	Netherlands:	Tel: +31 (0)40 29 58 700	Fax: +31 (0)40	29 58 710	
fibersales@draka.com	France:	Tel: +33 (0)3 21 79 49 00	Fax: +33 (0)3 2	21 79 49 33	
www.draka.com/communications	USA:	Toll free: 800-879-9862	Outside US: +	.828.459.9787	Fax: +1.828.459.826

TeraLight[™] Optical Fiber

To minimize your chromatic dispersion compensation CAPEX

Product Type: G.655.E, G.656

Coating Type: ColorLock-XS and Natural

Optical Specifications			
Attenuation			
Attenuation at 1	310 nm		\leq 0.40 dB/km
Attenuation at 1	383 nm*		≤ 1.0 dB/km
Attenuation at 1	550 nm		≤ 0.25 dB/km
Attenuation at 1	625 nm		≤ 0.28 dB/km
* Including H2-a	aging according to	IEC 60793-2-50, type B.1	.3
Other values av	ailable on request		
Attenuation	vs. Wavelength		
Maximum atten	uation change ove	r the window from referen	ice
Wavelength ra	nge (nm)	Reference λ (nm)	(dB/km)
1525 - 1575		1550	≤ 0.03
1550 - 1625		1550	≤ 0.05
1285 - 1330		1310	≤ 0.05
Point discon	tinuities		
No point discon	tinuity greater thar	n 0.05 dB at 1310 nm and	1550 nm.
Attenuation	with Bending		
Number of Turns	Mandrel Radius (mm)	Wavelength (nm)	Induced Attenuation (dB)
1	16	1550	≤ 0.5
100	25	1310	≤ 0.05
100	25	1550	≤ 0.05
100	30	1625	≤ 0.05
Cutoff Wavel	ength		
Cable Cutoff wa	avelength (λccf)		≤ 1300 nm
Mode Field D	Diameter		
Wavelength (nm) MFD (µ			MFD (µm)
1550			9.2 ± 0.5
Chromatic D	ispersion		
Wavelength (nm) Chromatic Dispersion (ps/[nm.km]			ersion (ps/[nm.km])
1440			> 0.1
1530 – 1565			5.5 to 10
1565 – 1625			7.5 to 13.4
1285 – 1330			-10.0 to -3.0
Zero Dispersion Wavelength (λ_0): ≤ 14			≤ 1440 nm
Polarization Mode Dispersion (PMD)			
PMD Link Design Value ^{**} (ps \sqrt{km}) ≤ 0.06			
Max. Individual Fiber (ps \sqrt{km}) ≤ 0.24			≤ 0.20
** According to IEC 60794-3, Ed 3 (Q=0.01%)			

Geometrical Specifications

Glass Geometry	
Cladding Diameter	$125.0\pm1.0~\mu\text{m}$
Core/Cladding Concentricity Error	≤ 0.6 μm
Cladding Non-Circularity	≤ 1.0 %
Fiber Curl (Radius)	≥ 4 m
Coating Geometry	
Coating Diameter	$242\pm7~\mu\text{m}$
Coating/Cladding Concentricity Error	≤ 12 μm
Coating Non-Circularity	≤ 5 %
Length	Standard lengths up to 25.2 km

Issue date: 08/10 Supersedes: 09/09

Mechanical Specifications

Proof Test				
The entire length is subjected to a tensile proof stress ≥ 0.7 GPa (100 kpsi); 1% strain equivalent				
Tensile Streng	Tensile Strength			
Dynamic tensile strength (0.5 meter gauge length):				
Aged*** and unaged: median > 3.8 GPa (550 kpsi)				
*** Aging at 85°C, 85% RH, 30 days				
Dynamic and Static Fatigue				
Dynamic fatigue, unaged and aged*** $n_d \ge 20$				
Static fatigue, aged*** $n_s \ge 23$				
Coating Performance				
Coating strip force unaged and aged****:				
- Average strip fo	rce:	1 N to 3 N		
- Peak strip force:		1.2 N to 8.9 N		
**** Aging:	 0°C and 45°C 30 days at 85°C and 85% F 14 days water immersion a 	RH t 23°C		

Wasp spray exposure (Telcordia)

Environmental Specifications

Attenuation		
Environmental Test	Test Conditions	Induced Attenuation at 1310, 1550 nm (dB/km)
Temperature cycling	- 60°C to 85°C	≤ 0.05
Temperature-Humidity cycling	- 10°C to 85°C, 4-98% RH	≤ 0.05
Water Immersion	14 days; 23°C	≤ 0.05
Dry Heat	30 days; 85°C	≤ 0.05
Damp Heat	30 days; 85°C; 85% RH	≤ 0.05

Typical Values

Miscellaneous	
Dispersion at 1310 nm	- 6 ps/(nm.km)
Dispersion at 1550 nm	8 ps/(nm.km)
Dispersion at 1625 nm	12 ps/(nm.km)
Dispersion slope at 1550 nm	0.052 ps/(nm ² .km)
Effective area	63 µm ²
Effective group index @ 1310 nm	1.4682
Effective group index @ 1550 nm	1.4683
Effective group index @ 1625 nm	1.4685
Rayleigh Backscatter Coefficient for 1 ns pulse width:	
@ 1310 nm	- 77.4 dB
@ 1550 nm	- 80.4 dB
@ 1625 nm	- 81.3 dB