

Single-Mode Fiber

LongLine[™] Optical Fiber

For long distance data transport across oceans and continents

How we can help our customers do more, make more, save more and achieve more. With the Draka LongLine[™] fiber, Draka is offering the benefit of its trench assisted design for ultra-long-haul applications, allowing increased distance without regeneration and easy cabling ability.

The LongLineTM fiber exhibits an extremely high effective area of 120 μ m², 50 % higher than standard single-mode fiber. It dramatically reduces the non-linear effects offering the possibility of higher power and consequently higher distance. The very low attenuation in the C- and L- bands further enhanced the distance capacity while preserving system margins. The trench assisted design keeps macro-bending and micro-bending to a very low level making it suitable for any cable design. In addition the LongLineTM fiber has chromatic properties compatible with commercially available chromatic dispersion modules or reverse dispersion fibers, like used in submarine applications.

The fiber complies with or exceeds ITU-T Recommendation G.654 and IEC Int. Standard 60793-2-50, type B1.2, which has the zero-dispersion wavelength around 1300 nm wavelength, shows a cut-off shift at a wavelength around 1500 nm, is loss-minimized and is optimized for use in the 1530-1625 nm region.

It benefits of the Draka's proprietary plasma process technologies (PCVD and $APVD^{TM}$) and coating technologies (DLPC9). The Draka LongLineTM fiber is available at different screen test tensile stress according to application and customer request, 2 % strain equivalent notably available for submarine applications.

Features	Advantages
Ultra large core	 Limits the non-linear effects Permits the launch of high power increasing the path length between repeaters Reduces the numbers of repeaters Minimizes CAPEX and OPEX
Very low attenuation	Further enhanced distancesIncrease system margins
Trench assisted design	Low sensitivity to macro and micro-bending lossesSuitable for any cable design
Standard dispersion over slope ratio	Allows a perfect compensation of chromatic dispersion either by dispersion compensating module (DCM) or by reverse dispersion fibers (RDF) as used in submarine systems
Very low PMD	10, 40, 100 Gbps capability

Key Industry Leading Milestones

VALWE

1999	2002	2003	2006
Introduced TeraLight [™] NZ-DSF for LH and ULH	World record: 6.4 Tbps over 2100 km	World record: 6000 km 80 channels at 10 Gbps	BendBright-XS: 1 st truly bend-insensitive SMF
Draka Communications	Netherlands:	Tel: +31 (0)40 29 58 700 Eax: +31 (0)40 29 5	58 710
fibersales@draka.com	France:	Tel: +33 (0)3 21 79 49 00 Fax: +33 (0)3 21 79	9 49 33
www.draka.com/communications	USA:	Toll free: 800-879-9862 Outside US: +1.828	8.459.9787 Fax: +1.828.459.

LongLine[™] Optical Fiber

For long distance data transport across oceans and continents

Product Type: G.654.B Coating Type: Natural

Optical Specifications

Attenuation			
Attenuation at	1550 nm		≤ 0.19 dB/km
Attenuation at	1625 nm		\leq 0.21 dB/km
Attenuation	vs. Wavelength		
Maximum atter	nuation change over th	e window from refer	ence
Wavelength ra	ange (nm) Re	eference λ (nm)	(dB/km)
1525 - 1575		1550	≤ 0.02
1550 - 1625		1550	≤ 0.03
Point discor	ntinuities		
No point disco	ntinuity greater than 0.	05 dB at 1550 nm.	
Attenuation	with Bending		
Number of Turns	Mandrel Radius (mm)	Wavelength (nm)	Induced Attenuation (dB)
100	30	1550	≤ 0.03
100	30	1625	≤ 0.1
Cutoff Wave	elength		
Cable Cutoff w	avelength (λccf)		≤ 1530 nm
Mode Field	Diameter		
Wavelength (I	nm)		MFD (µm)
1550			11.6 - 12.4
Chromatic D	Dispersion		
Wavelength (I	nm)	Chromatic Dis	persion (ps/[nm.km])
1530 – 1565			≤ 23
1565 – 1625			≤ 27
Zero Dispersio	n Wavelength (λ_0):		≤ 1350 nm
Polarization	Mode Dispersion	(PMD)	
PMD Link Des	ign Value* (ps√km)		≤ 0.04
Max. Individua	l Fiber (ps√km)		≤ 0.1
* According to	IEC 60794 - 3, Ed 3 (G	Q=0.01%)	

Geometrical Specifications

Glass Geometry	
Cladding Diameter	$125.0\pm0.7~\mu\text{m}$
Core/Cladding Concentricity Error	≤ 0.5 μm
Cladding Non-Circularity	≤ 0.7 %
Fiber Curl (Radius)	≥ 4 m
Coating Geometry	
Coating Diameter	$242\pm7~\mu\text{m}$
Coating/Cladding Concentricity Error	≤ 12 μm
Coating Non-Circularity	\leq 5 %
Length	Standard lengths up to 25.2 km

Issue date: 08/10 Supersedes: 11/09

Mechanical Specifications

Proof Test		
The entire length is subjected to a tensile proof stress ≥ 0.7 GPa (100 kpsi); 1% strain equivalent		
Tensile Strength		
Dynamic tensile st	rength (0.5 meter gauge length	ו):
Aged** and unage	d:	median > 3.8 GPa (550 kpsi)
** Aging at 85°C, 8	35% RH, 30 days	
Dynamic and S	tatic Fatigue	
Dynamic fatigue, unaged and aged** $n_d \ge 20$		
Static fatigue, aged** $n_s \ge 23$		
Coating Perform	mance	
Coating strip force	unaged and aged***:	
- Average strip for	ce:	1 N to 3 N
- Peak strip force:		1.2 N to 8.9 N
*** Aging:	• 0°C and 45°C • 30 days at 85°C and 85% i	RH

- 14 days water immersion at 23°C
- Wasp spray exposure (Telcordia)

Environmental Specifications

Attenuation		
Environmental Test	Test Conditions	Induced Attenuation at 1310, 1550 nm (dB/km)
Temperature cycling	- 60°C to 85°C	≤ 0.05
Temperature-Humidity cycling	- 10°C to 85°C, 4-98% RH	≤ 0.05
Water Immersion	14 days; 23°C	≤ 0.05
Dry Heat	30 days; 85°C	≤ 0.05
Damp Heat	30 days; 85°C; 85% RH	≤ 0.05

Typical Values

Miscellaneous	
Dispersion at 1550 nm	20.3 ps/(nm.km)
Dispersion at 1625 nm	24.9 ps/(nm.km)
Dispersion slope at 1550 nm	0.062 ps/(nm ² .km)
Effective area	120 µm ²
Effective group index @ 1550 nm	1.4671
Effective group index @ 1625 nm	1.4676
Rayleigh Backscatter Coefficient for 1 ns pulse width:	
@ 1550 nm	- 83.6 dB
@ 1625 nm	- 84.2 dB
Median Dynamic Tensile Strength	5.3 GPa (750 kpsi)

(Aged at 85°C, 85% RH, 30 days; 0,5 m gauge length)